Disentangling mode-specific selection and measurement bias in social surveys

Jan van der Laan, Bart Buelens, Barry Schouten and Jan van den Brakel *dj.vanderlaan@cbs.nl*

ITSEW, 2012-09-03

Outline

- The MEPS experiment Mode-effecten in persoonsstatistieken/ Mode Effects in Social Surveys
- Disentangling mode effects
- Results

The impact of survey mode

Data collection steps:

- 1. Persons need to be reached (coverage)
- 2. Persons need to respond (response)
- 3. Persons need to provide valid answers (measurement)

selection

The MEPS experiment

Objectives

- 1. Measurement bias for number of key statistics
- 2. Relation between person, nature of survey question and mode effect
- 3. Recommend improvements to mixed-mode methodology

The MEPS experiment

The MEPS experiment

Wave 1:

- Random assignment to survey mode
- Questionnaire is Safety Monitor with small modifications
- Regular data collection strategy for each mode

Wave 2:

- Questionnaire repeats main wave 1 questions
- Additional questions about general survey attitudes, attitudes towards politics and survey design features.

Response

	CAPI	CATI	Paper	Web	Total
Sample	2182	2200	2200	2199	8781
Wave 1	1338	993	1076	631	4038
	61%	45%	49%	29%	46%
Wave 2	1077	1036	1099	1084	4296
	49%	47%	50%	49%	49%
Both	933	700	726	444	2803
	42%	32%	33%	20%	32%

Disentangling mode effects

Total relative mode effect:

Disentangling mode effects

Decomposition 1:

Estimation of components

 $\hat{y}_{tel,tel,tel} = Wave 1 CATI mean$

 $\hat{y}_{tel,f2f,tel}$ = Wave 1 CATI response weighted to Wave 2 CAPI response of telephone owners

 $\hat{y}_{tel,f2f,f2f}$ = Wave 1 CAPI mean of telephone owners

 $\hat{y}_{tot,f2f,f2f}$ = Wave 1CAPI mean

Decomposition 1:

$$\begin{split} M_{tel}(y) = & (y_{tel,tel,tel} - y_{tel,f2f,tel}) + & NR_{tel}(y) \\ & (y_{tel,f2f,tel} - y_{tel,f2f,f2f}) + & ME_{tel}(y) \\ & (y_{tel,f2f,f2f} - y_{tot,f2f,f2f}) & CO_{tel}(y) \end{split}$$

Decomposition 2:

$$M_{tel}(y) = (y_{tel,tel,tel} - y_{tel,f2f,tel}) + NR_{tel}(y)$$

$$(y_{tel,f2f,tel} - y_{tot,f2f,tel}) + CO_{tel}(y)$$

$$(y_{tot,f2f,tel} - y_{tot,f2f,f2f}) ME_{tel}(y)$$

$$population/$$

$$population/$$

$$participation/$$

$$Participation$$

Assumptions

- 1. The response to wave 2 is similar to the response to a regular CAPI survey
- 2. The answering behaviour to wave 2 is CAPI
- 3. The nonresponse to wave 1 relative to wave 2, is missing at random
- 4. The mode effects in wave 2 between CATI and CAPI have a negligible impact

Models

empstat	inctype + regempl + income + hhpos
offtot	w2_offtot + w2_nuisance + age6 + w2_contpol + w2_offbike + w2_victviol
victim	w2_victim + w2_nuisance + w2_contpol + inctype + w2_offtot + w2_offviol
nuisance	w2_nuisance + w2_unsafe + urban + w2_victviol
unsafe	w2_unsafe + w2_nuisance + age3 + betr3
educlev	income + inctype + intpol + hhsize + betr3 + satt9

Mode effect LFS

Variable	Mode	Mean	CAPI	NR	CO	ME
Employ	Tel.	56.5%	56.1%	0.1%	-1.2%	1.5%
	Web	65.1%	56.1%	5.5%	2.5%	1.0%
Unemploy	Tel.	4.9%	7.9%	-1.1%	-0.8%	-1.1%
	Web.	5.3%	7.9%	-0.9%	0.0%	-1.7%

Variable	Mode	Mean	CAPI	NR	CO	ME
#crimes	Tel.	35.5	41.6	-2.0	0.3	-4.6
	Paper	50.8	41.6	-3.6	-	12.8
	Web	56.2	41.6	-3.7	2.6	15.7
victim	Tel.	22.7	26.5	0.0	0.0	-3.8
	Paper	28.2	26.5	-1.8	-	3.5
	Web	32.0	26.5	0.4	1.3	3.8
nuisance	Tel.	1.27	1.47	-0.01	-0.04	-0.16
	Paper	1.41	1.47	-0.01	-	-0.06
	Web	1.68	1.47	0.01	-0.02	0.21
unsafe	Tel.	18.3	22.4	-1.1	-0.2	-2.8
	Paper	23.5	22.4	-0.1	-	1.2
	Web	28.5	22.4	-0.6	0.4	6.3

Summary

Crime victimization survey

- Measurement effect dominate
- Web: negative; Telephone: positive

Labour Force Survey

- Significant differences web, telephone and face-to-face
- No dominant component
- Relative selection effects can be explained by regular register variables

Variable	Mode	Mean	CAPI	NR	CO	ME
educlev - 10	Tel.	14.0%	12.7%	-1.1%	-0.3%	2.8%
lowest	Web	12.7%	12.7%	-1.0%	-3.2%	4.2%
educlev – 20	Tel.	19.3%	21.1%	-0.6%	-0.1%	-1.1%
	Web	19.8%	21.1%	-1.6%	-0.1%	0.4%
educlev – 30	Tel.	34.3%	38.3%	0.4%	0.0%	-4.4%
	Web	25.0%	38.3%	-0.2%	1.4%	-14.5%
educlev – 40	Tel.	24.8%	19.7%	0.2%	0.1%	4.8%
	Web	24.6%	19.7%	0.8%	2.1%	1.9%
educlev – 50	Tel.	7.0%	8.1%	0.8%	0.3%	-2.1%
highest	Web	9.5%	8.1%	0.5%	-0.1%	1.1%
unkown	Tel.	0.5%	0.1%	0.4%	-0.1%	0.0%
	Web	8.4%	0.1%	1.5%	-0.1%	6.9%